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Abstract: Drought is a prominent feature of Hawai‘i’s climate. However, it has been over 30 years
since the last comprehensive meteorological drought analysis, and recent drying trends have em-
phasized the need to better understand drought dynamics and multi-sector effects in Hawai‘i. Here,
we provide a comprehensive synthesis of past drought effects in Hawai‘i that we integrate with
geospatial analysis of drought characteristics using a newly developed 100-year (1920–2019) gridded
Standardized Precipitation Index (SPI) dataset. The synthesis examines past droughts classified into
five categories: Meteorological, agricultural, hydrological, ecological, and socioeconomic drought.
Results show that drought duration and magnitude have increased significantly, consistent with
trends found in other Pacific Islands. We found that most droughts were associated with El Niño
events, and the two worst droughts of the past century were multi-year events occurring in 1998–2002
and 2007–2014. The former event was most severe on the islands of O’ahu and Kaua’i while the
latter event was most severe on Hawai‘i Island. Within islands, we found different spatial patterns
depending on leeward versus windward contrasts. Droughts have resulted in over $80 million in
agricultural relief since 1996 and have increased wildfire risk, especially during El Niño years. In
addition to providing the historical context needed to better understand future drought projections
and to develop effective policies and management strategies to protect natural, cultural, hydrological,
and agricultural resources, this work provides a framework for conducting drought analyses in other
tropical island systems, especially those with a complex topography and strong climatic gradients.

Keywords: drought; Standardized Precipitation Index (SPI); Pacific Islands; El Niño-Southern
Oscillation (ENSO); tropical ecosystems; agricultural drought; wildfire
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1. Introduction

Drought is a hazardous and costly natural disturbance that affects human popula-
tions worldwide [1]. Droughts affect nearly all ecosystem types, from lowland deserts to
wet tropical forests [2], and the effects of drought can range from biomass loss and tree
mortality in forests [3] to drinking water shortages and economic losses from a variety of
sectors including tourism and agriculture [1]. In the tropical Pacific, droughts are often
synchronous across vast areas, driven by large-scale modes of climate variability such as
the El Niño-Southern Oscillation (ENSO; [4,5]). In the U.S. State of Hawai‘i, most El Niño
events, the warm phase of ENSO, produce atmospheric conditions that are unfavorable for
rainfall [6], which results in drier-than-average boreal winter conditions [7–9].

Drought is also a prominent feature of the climate of Hawai‘i and can cause severe
effects across multiple sectors. According to Hawaiian oral traditions, dryland agricultural
systems were particularly vulnerable to droughts, with some political upheavals linked
directly to devastating droughts [10]. In the recent past, droughts in Hawai‘i have reduced
crop yields, caused the loss of livestock, and reduced streamflow and reservoir water levels.
In turn, these changes had driven the depletion of groundwater resources and increased
the extent and severity of wildland fire, with damage to terrestrial, aquatic, and nearshore
habitats. Collectively, these effects translate into substantial economic losses [11], although
a comprehensive economic drought analysis for the state has not been conducted. In
response to drought, resource managers can impose water use restrictions, for example
through emergency declarations. Droughts, or even dry spells, can contribute to conflicts
between agricultural and other instream water users [11]. The severity of droughts is also
likely to increase as population growth increases the total demand for freshwater [12]
and as air temperature continues to increase [13]. These changes will be compounded by
anticipated declines in total annual precipitation [14,15], all combining to intensify the
effects of future droughts in Hawai‘i and exacerbate an already-stressed freshwater supply.

Assessments of historical droughts are fundamental for natural resource planning and
management [16,17], especially at the regional and local/municipal scales [18,19]. Due to
the multi-sector nature of drought effects, a drought will mobilize actions from freshwater
resource managers (e.g., boards of water supply), land managers (e.g., forestry and fire pro-
tection, wildlife, and ecosystem restoration), and agricultural (especially rainfed) producers
(e.g., ranchers and dryland farmers). Efforts to anticipate and then mitigate the effects of
drought require knowledge of historical drought characteristics and clearly understood
definitions of drought, with the latter being especially important in planning because the
definition of drought can vary among different disciplines. Drought is most often defined
as the persistence of a precipitation deficit over a specific region and period of time [20],
with other definitions also including the effects of the drought or indicator variables such
as evapotranspiration, soil moisture, near-surface-air temperature, streamflow, groundwa-
ter level, and vegetation cover [16]. Drought can be classified as falling into one of five
categories depending on effects and duration: Meteorological, agricultural, hydrological,
socioeconomic, and ecological ([21,22]; Figure 1). The first three types of physical drought
typically occur in sequence, while socioeconomic and ecological drought can occur at any
point in a drought’s progression (Figure 1). Meteorological drought is defined by the degree
of dryness and the duration of the dry period. This deficiency of precipitation typically
depletes soil moisture, and if a subsequent crop failure results from a lack of precipitation,
this is then known as agricultural drought. When dry conditions continue to persist and
eventually affect surface water and groundwater supply, this is called hydrological drought.
Socioeconomic drought considers the human demand for economic goods and is defined
as when societal demand for goods exceeds supply as a result of a weather-related deficit
in the water supply. This can also encompass the variable effects of drought on different
groups of people, with effects being determined by access to resources and other political
factors, and conflicts that may arise over limited resources [23]. A relatively new drought
type, “ecological drought”, has been defined by Crausbay et al. [21] to characterize the
direct and indirect effects of drought on natural ecosystems, with effects ranging from
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tree mortality [24,25] to increased fire disturbances [26]. In this study, we provide the first
comprehensive review of all five drought perspectives for Hawai‘i.
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the National Drought Mitigation Center; https://drought.unl.edu/ (accessed on 7 August 2022)).

To facilitate effective communication within and across sectors, drought events are
typically characterized by an index that combines numerical indicators into a single value.
No single accepted definition, indicator, or synthesized index of drought exists, with more
than 100 indices having been developed [20]. Some of the most common indices include the
Standardized Precipitation Index (SPI; [27]); Palmer Drought Severity Index (PDSI; [28]);
the Standardized Precipitation-Evapotranspiration Index (SPEI; [29]); the Keetch–Byram
Drought Index (KBDI; [30]); the Crop Moisture Index (CMI; [31]); and the U.S. Drought
Monitor (USDM; [32]). The primary source for monitoring drought in Hawai‘i since 2000
is the USDM (https://droughtmonitor.unl.edu/ (accessed on 7 August 2022); Figure 2), a
hybrid index that is useful for communicating drought conditions and impacts to the public.
However, the relatively arbitrary spatial delineations and categorical drought values, lack
of spatial detail, and short record history (only since the year 2000) limit the utility of the
product for more localized or longer-term numerical analyses and applications.
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on 30 August 2020).
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In the last comprehensive drought analysis for Hawai‘i, Giambelluca et al. [33] ana-
lyzed three meteorological drought indices for the period 1885–1986. The results showed
that the most severe drought statewide started in September 1977 and lasted for six months;
many droughts were associated with El Niño events and higher-than-normal temperatures.
This report has been critical to understanding drought and its effects in Hawai‘i through
1990, but the most recent three decades have seen important changes to the climate sys-
tem (e.g., [13,15]). Further, several new high-resolution gridded climate datasets are now
available (e.g., [34–36]), allowing for an updated analysis of historical drought conditions
and effects across the State. A comprehensive analysis of drought in Hawai‘i can provide
information for resource managers to institutionalize the awareness of drought effects
and responses to ensure that short- and long-term planning and management will be
effective [37].

The objectives of this study are twofold: First, to conduct a comprehensive geospatial
analysis of a new 100-year (1920–2019) gridded SPI dataset [38] to characterize historical
drought in Hawai‘i. Second, to review and synthesize the recent literature documenting
droughts and their effects in Hawai‘i. The study area of Hawai‘i is described in Section 2.
Methods are presented in Section 3, and results for the spatiotemporal drought analysis
are given in Section 4. Section 5 contains a synthesis of the recent drought literature and a
discussion of the relevance of the SPI results for different sectors. Conclusions are presented
in Section 6.

2. Study Area

The main Hawaiian Islands are located in the Pacific Ocean between 18.90◦ N and
22.24◦ N latitude, and 160.25◦ W and 154.80◦ W longitude. This study considered seven
of the eight major islands where climate data are available: Kaua‘i, O‘ahu, Moloka‘i,
Lāna‘i, Maui, Kaho‘olawe, and Hawai‘i. These islands were grouped into the following
four regions for analysis and discussion: Kaua‘i, O‘ahu, Maui Nui, and Hawai‘i Island;
“Maui Nui” herein refers to all islands in Maui County (Maui, Kaho‘olawe, Moloka‘i, and
Lāna‘i). The climate of Hawai‘i is extremely diverse, due in part to the large elevation range
(from 0 to 4205 m) and complex topography. Average annual rainfall ranges from 204 to
10,271 mm [39], with some of the steepest rainfall gradients in the world, particularly on
leeward slopes (Figure 3). Prevailing surface winds are east-northeast (trade winds), and
much of the rainfall is produced through orographic lifting, resulting in wet windward (east-
facing) slopes and dry leeward lowlands. Annual rainfall in most areas is characterized by
two distinct seasons: A wet season (November to April) and a dry season (May to October).
The climate in Hawai‘i is also strongly influenced by large-scale modes of natural climate
variability, in particular ENSO, the Pacific Decadal Oscillation (PDO), and the Pacific North
American (PNA) pattern [7,8].

Many of the early climate monitoring stations in Hawai‘i were established on agri-
cultural plantations, as growers required detailed water availability data to maximize
crop yields and anticipate responses to rainfall reductions [40]. In 1980, lands devoted
to agriculture and pasture lands made up 35% of the total state land area. Over the past
50 years, however, agriculture in Hawai‘i has undergone substantial changes, including the
closure of these large-scale monocrop plantations, a decline in the amount of actively grazed
pastureland (a 31% decline between 1980 and 2015), but a rise in diversified agriculture,
and an increase in commercial forestry and biotechnology [41]. With statewide initiatives
to increase local food production, Hawai‘i’s agricultural sector will continue to play an
important economic role in the coming decades.

Terrestrial ecosystems in Hawai‘i are known for their remarkably high levels of en-
demism. Given the well-recognized extreme climatic and edaphic gradients, Hawai‘i’s
natural areas contain the majority of Holdridge life zones (bioclimatic zones), spanning
tropical rain forests, arid grasslands, and alpine tundra [42]. However, since European
contact in Hawai‘i, the rate of species introductions has increased one-million-fold above
the estimated natural rate, with non-native invasive species resulting in widespread dis-



Sustainability 2022, 14, 12023 5 of 25

placement of native species [43]. The combined effects of invasive species, disease, and
land cover change have severely affected native plant and animal communities in many
areas of the state, resulting in a “biodiversity crisis,” with native ecosystems giving way to
alien-dominated ecosystems and species endangerment or extinction [44]. These diverse
co-occurring threats are being exacerbated by climate change, and any further changes to
drought frequency, severity, or duration will likely exacerbate effects on native species, for
example, through competitive interactions with non-native invasive species (e.g., [45–47]).
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Figure 3. State of Hawai‘i’s average annual rainfall (1978–2007) in millimeters (http://rainfall.
geography.hawaii.edu/ (accessed on 30 August 2020); Rainfall Atlas of Hawai‘i [39]). “Maui Nui”
refers to all islands in Maui County (Maui, Kaho‘olawe, Moloka‘i, and Lāna‘i).

3. Materials and Methods

In 2011, the World Meteorological Organization recommended the SPI as the interna-
tionally preferred index for classifying meteorological droughts [48]. The SPI is based solely
on precipitation and compares precipitation with its local multi-year average, allowing wet
and dry climates to be represented on a common scale to enable comparisons. It allows
the characterization of dryness (and wetness) across different timescales, which can reflect
meteorological, agricultural, and hydrological drought effects [27]. A disadvantage of
the SPI is that it does not consider other important variables related to droughts, such
as soil moisture or potential evapotranspiration (PET; [29]). In Hawai‘i, however, neither
monthly nor daily gridded data exist for soil moisture and PET, and few stations measure
the necessary variables, as calculating PET requires radiation, humidity, and wind speed.
Therefore, indices such as the PDSI or the SPEI cannot yet be calculated in Hawai‘i. The
KBDI, used to monitor fire risk, is currently only calculated operationally at one location,
the Honolulu Airport [11], and the State of Hawai‘i is not included in many of the products
available for the contiguous United States (e.g., CMI).

The input dataset used for the retrospective drought analysis presented here is a new
gridded monthly SPI product created for the Hawaiian Islands for the period 1920–2019 [38].
Using a gridded monthly rainfall time series from 1990 to 2012 [34], SPI was calculated
for each 250 m pixel by fitting a Gamma distribution to the original rainfall data [49,50].
Gridded results were validated using independent station-based SPI supplied by the Na-

http://rainfall.geography.hawaii.edu/
http://rainfall.geography.hawaii.edu/
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tional Weather Service and compared with the USDM. Full quality control methods and
results are described in Lucas et al. [38]. In 2022, a new set of 250-m-resolution monthly
rainfall grids was released for the period 1990–2019 [36]. Using the same methods as Lucas
et al. [38], we calculated an updated gridded SPI using the monthly rainfall data from
Frazier et al. [34] from 1920 to 1989, and data from Lucas et al. [36] from 1990 to 2019.
The gridded SPI dataset (1920–2019) was calculated for 10 different timescales (from one
month up to 60 months), where each new value is determined from the previous months.
A 3-month SPI in August 1990, for example, compares the June-July-August (JJA) precipita-
tion in 1990 to the JJA totals of all 100 years in the record. For this study, we analyzed the
following four SPI timescales: SPI-3, SPI-6, SPI-12, and SPI-24 corresponding to the 3, 6-,
12-, and 24-month SPI timescales, respectively. Most of our results present the SPI-6 and
SPI-12, as these span the timescales needed to reflect short-term to long-term precipitation
patterns [51].

To examine the spatiotemporal characteristics of the SPI dataset at selected timescales,
maps of average SPI by decade were calculated based on the average SPI at each 250 m
pixel from 1920 to 2019. To represent drought frequency, we calculated the proportion of
months in drought, which ranged from 0 months in a drought up to all months in a drought;
these were then converted to a proportion. These drought frequencies were calculated by
decade for four different drought category thresholds: SPI < 0 (mild drought), SPI < −1.0
(moderate drought), SPI < −1.5 (severe drought), and SPI < −2.0 (extreme drought).

Drought events were defined as periods during which the SPI values were continu-
ously negative and reached a value of −1.0 or less [27]. The start date of each drought was
determined as the date when the SPI values first fell below zero, and the end of the drought
occurred when the values changed from negative to positive (after reaching a value of −1.0
or less). Drought events were calculated based on the average statewide and island time
series. For each event, the start and end dates were determined, and five classic disturbance
metrics were calculated to characterize each event: Duration (the number of months in
drought), magnitude (the sum of SPI values during drought), intensity (the magnitude
divided by the duration), peak intensity (the minimum SPI value during drought), and
maximum spatial extent (maximum percentage of land area with SPI < −1.0 during the
event). Droughts were ranked based on each of these five metrics, and the average of these
five ranks was calculated to provide an overall ranking of droughts.

To map each drought, bi-variate maps of drought intensity and percent time in drought
were produced. To display the maps, the SPI pixels were aggregated to a coarser resolution
by averaging 250 m pixel values within 5 km grid cells, and these coarse-resolution raster
grid cells were then converted to points. The total percent time in drought at each point
location was calculated as the percentage of months in any drought category during the
event years. To calculate intensity, first the number of months in each of the four drought
categories (mild, moderate, severe, and extreme) was divided by the total number of
months in any drought category. A weighted sum of these proportional intensities was
calculated to determine the overall drought intensity at each point, with weights assigned
as 0.05, 0.15, 0.30, and 0.50 from mild drought to extreme drought, respectively. The total
percent time in any drought category during the years identified for each event was used
to scale the size of the points, while the weighted proportional drought intensity was used
to scale the color of the points.

Drought trends were analyzed by decade from 1920 to 2019, focusing on drought
frequency (DF; the number of events per decade), total drought duration (TDD), and total
drought magnitude (TDM). TDD and TDM are the sums of the durations and magnitudes
of drought events that occurred in the considered period, expressed as the number of
months for the duration, and a dimensionless severity score for magnitude [52]. These
metrics were calculated based on the statewide and island-wide average time series in
10-year intervals. Linear trends were calculated for each metric over the nine decades using
Student’s t test at the 95% confidence level. Analysis of DF, TDD, and TDM is preferred
to calculating trends on the actual SPI values (e.g., using the December SPI-12 values to
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represent annual trends), which would provide trends in standardized precipitation rather
than drought [52].

To represent the strength and phase of ENSO, the Multivariate ENSO Index (MEI)
was used [53]. The MEI was derived from six variables over the tropical Pacific and was
chosen because it incorporates more information into a single variable than indices that
focus only on sea surface temperatures or atmospheric pressure fields. Scatterplots between
MEI and SPI were made for the wet and dry seasons to determine the relationship between
ENSO and historical droughts. Seasonal SPI was calculated as the average of the SPI values
during wet and dry season months for each year. To examine the relationship between
wildfire and ENSO, the maximum area burned [54] was plotted for each ENSO phase, and
significance between groups was assessed using the non-parametric Dunn’s test [55]. The
ENSO phase and intensity in each year were determined from the ranks of the average
December-January-February MEI values, as this is when ENSO events are most clearly
defined. To differentiate the phases and intensities of ENSO events, the rank method was
used [53]. MEI values in the bottom 4% were considered Very Strong El Niño events;
4–10% were Strong El Niño events; 10–20% were Moderate El Niño events; 20–33% were
Weak El Niño events; 33–67% were Neutral; 67–80% were Weak La Niña events; 80–90%
were Moderate La Niña events; 90–96% were Strong La Niña events; and above 96% were
considered Very Strong La Niña events.

4. SPI Analysis Results

The average SPI maps for each decade between 1920 and 2019 indicate strong decadal
variability, with wet and dry decades apparent (the 1930s were generally wetter, whereas
the 1970s and 1990–2019 were dry) and greater variations in the leeward (western) sides of
the islands (Figure 4). Although the average calculated over the entire period would show
zero values everywhere, as this is how the SPI is defined, considering individual decades
show generally wetter and drier periods over the time series. These temporal patterns
are also seen in the statewide average time series (Figure S1), in which several extended
dry periods in the latter part of the record are notable in both the short- and long-term
drought metrics (across all SPI timescales). For drought frequency, Figure 5 shows maps of
the proportion of months in each decade where locations experienced moderate drought or
worse (SPI < −1), severe drought or worse (SPI < −1.5), or extreme drought (SPI < −2.0),
based on SPI-12. In general, all decades experienced some proportion of moderate drought
months, but the last three decades showed a high proportion of both severe and extreme
drought months.

A total of 28 statewide droughts were found for SPI-6 (Table S1, Figure 6), and
12 droughts were identified for SPI-12 (Table 1, Figure 6). The two highest magnitude,
highest peak intensity, and longest duration droughts for both SPI-6 and SPI-12 were the
2007–2014 drought followed by the 1998–2002 drought (years based on SPI-12, Table 1).
The 2007–2014 drought lasted for an unprecedented 91 months, while the second-longest
drought persisted for 50 months (1998–2002; Table 1). Based on SPI-6, November and
July were the most common months when droughts began, and August was the most
common month of drought termination (Table S1). For the SPI-12 series, January was the
most common starting month, and no droughts began or ended in the summer months
(June–August) (Table 1). The droughts before 1991 align with the droughts identified by
Giambelluca et al. [33]; the 1975–1978, 1952–1954, and 1983–1985 droughts (ranked third,
fourth, and seventh, respectively, in Table 1) were all identified as some of the most intense
and longest-lasting droughts in Hawai‘i’s history [33], although the exact months and ranks
differ due to the difference in methods.

For Kaua‘i, O‘ahu, and Maui Nui, the 1998–2002 drought was more severe than the
2007–2014 drought, ranked first (Figures 7 and 8; Tables S2–S5); the 1998–2002 drought
ranked second for Hawai‘i Island (Table S2). The 2007–2014 drought ranked first for Hawai‘i
Island, second for Maui Nui, whereas on the Island of Kaua‘i, this drought ranked fourth
and fifth, and on O‘ahu was ranked sixth. Although the 2007–2014 drought had a longer
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duration and higher magnitude for Maui Nui than the 1998–2002 drought, the latter had a
much higher intensity and higher maximum and average percent area in moderate drought
or worse (Figure 7, Table S3). The statewide drought ranked fourth, 1952–1954 (Table 1),
was more substantial on the islands of Kaua‘i, O‘ahu, and Maui Nui (ranked third, second,
and third, respectively) than on Hawai‘i Island (ranked 10th) (Tables S2–S5).
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Figure 4. Average 6-month (a) and 12-month (b) SPI by decade (1920–2019) for the State of Hawai‘i.

To examine the spatial characteristics of these droughts, maps of the two worst (highest
ranking) droughts on record (2007–2014 and 1998–2002, identified based on the statewide
overall rank in Table 1) were plotted based on SPI-12 (Figure 8). Both droughts were severe
and persistent in leeward areas of the islands. The largest spatial differences between
these two droughts were seen in the windward areas of Hawai‘i Island and Maui, which
experienced less time in drought and lower drought severity during the 1998–2002 drought
compared to the 2007–2014 drought. For the Islands of Kaua‘i and O‘ahu, the 1998–2002
drought was clearly more severe than the 2007–2014 drought, with both islands experienc-
ing stronger drought intensity compared to 2007–2014 nearly everywhere, and experiencing
drought for the majority of the time between 1998 and 2002 (Figure 8).

Decadal DF, TDD, and TDM all showed positive trends statewide for both SPI-6 and
SPI-12 from 1920 to 2019 (Figure 9). A considerable increase in drought duration and
magnitude occurred in the 1970s, and TDD and TDM continued to increase through the
1990s and 2000s. All statewide trends in TDD and TDM were significant at the 95% level,
whereas trends in DF were not significant (p = 0.08 for SPI-12). Island-wide decadal DF,
TDD, and TDM also increased, but the significance of these positive trends varied by island
(Figure 8). TDD trends were significant for every island, and TDM trends were significant
for all islands except O‘ahu. Kaua‘i was the only island with significant trends in DF. These
results indicate that droughts in Hawai‘i have become longer and more severe, and on
Kaua‘i, also more frequent.
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Figure 5. Proportion of months (from 0 to 1) in each decade (1920–2019) where locations experienced
(a) moderate drought or worse (SPI-12 less than −1); (b) severe drought or worse (SPI-12 less than
−1.5); and (c) extreme drought (SPI-12 less than −2.0). Zero values are shown in white.
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Figure 6. Droughts identified from the statewide average SPI time series (SPI-6, top panel; SPI-12,
bottom panel). Intensity (absolute value of SPI values), peak intensity, average intensity, magnitude,
and percent area in moderate drought or worse (SPI < −1) are shown for each drought; magnitude
and percent area are shown on reverse axis.
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Table 1. Statewide droughts (1920–2019) identified by average SPI-12, sorted by overall rank. Overall
rank is the average of the ranks of the metrics shown here: Average intensity (absolute value of SPI
values), peak intensity, duration, magnitude, and maximum percent area. Maximum percent area is
the maximum percent of land area with SPI-12 < −1 during the event (moderate drought or worse).

Overall
Rank Start End Avg.

Intensity
Peak

Intensity Duration Magnitude Max. Pct.
Area

1 March 2007 September 2014 1.03 −2.28 91 −93.3 92.4

2 January 1998 February 2002 1.07 −1.73 50 −53.7 83.0

3 September 1975 November 1978 0.62 −1.37 39 −24.2 85.5

4 October 1952 November 1954 0.81 −1.51 26 −21.0 75.0

5 December 2002 February 2004 1.05 −1.63 15 −15.7 80.0

6 January 1972 March 1974 0.59 −1.45 27 −15.8 90.6

7 April 1983 September 1985 0.74 −1.39 30 −22.2 72.4

8 April 1925 March 1927 0.73 −1.45 24 −17.6 73.3

9 January 1995 October 1996 0.65 −1.36 22 −14.2 71.7

10 December 1991 May 1994 0.49 −1.25 30 −14.6 68.1

11 February 1933 October 1934 0.58 −1.36 21 −12.3 72.6

12 March 1981 December 1981 0.98 −1.32 10 −9.8 67.9
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Figure 7. Droughts identified from the island average SPI-12 time series. (a) Kaua‘i; (b) O‘ahu;
(c) Maui Nui; and (d) Hawai‘i Island. Intensity (absolute value of SPI values), peak intensity, average
intensity, magnitude, and percent area in moderate drought or worse (SPI < −1) are shown for each
drought; magnitude and percent area are shown on reverse axis.
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in yellow to extreme drought in dark red). Size of points indicates proportion of time spent in drought
(smallest points: 0–25% time in drought, largest points: 85–100% time in drought during drought years).
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Figure 9. State and island drought frequency (DF; number of events) (a,b), total drought duration
(TDD; number of months) (c,d), and total drought magnitude (TDM; unitless) (e,f) by decade from
1920–2019. Statewide trends (a,c,e) are shown for SPI-6 (darker colors, dashed trend line) and SPI-12
(lighter colors, solid trend line). Island trends (b,d,f) are shown for SPI-12; Ka = Kaua‘i, Oa = O‘ahu,
Ma = Maui Nui, and Ha = Hawai‘i Island. p < 0.05 indicated with asterisk *.
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To examine the relation between ENSO and drought, plotting the smoothed MEI
time series with the SPI-12 time series showed that many dry periods (negative SPI)
were preceded by the onset of El Niño conditions. For example, the 1997/98 El Niño
event preceded the 1998–2002 drought (Figure 10). However, not all droughts have been
preceded by El Niño events (e.g., 2012–2013 drought conditions), and not all El Niño events
have led to droughts (e.g., 1987/88 El Niño). The 2007–2014 drought was associated with
a moderate El Niño event in 2009/10; however, the dry conditions began prior to this
event and persisted through two La Niña events from 2010 to 2012. The relation between
seasonal SPI and the MEI show that wet season (November to April) correlations were
negative, indicating that El Niño events were associated with drier-than-average wet season
conditions, and La Niña events with wetter-than-average wet seasons (Figure 11). In the
dry season months (May to October), the correlations were positive, indicating that ENSO
events had the opposite effect on rainfall (El Niño events associated with wetter dry seasons,
La Niña events associated with drier dry seasons). It is also notable that the dry season
correlations are stronger than the wet season correlations (Figure 11).
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Figure 10. Time series of average monthly statewide SPI-12 plotted with the decadally smoothed
MEI time series. (a) 1920–1953; (b) 1954–1986; (c) 1987–2019. Positive MEI (El Niño conditions) are
shown in pink, negative MEI (La Niña conditions) are shown in blue.
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5. Synthesis and Discussion
5.1. Meteorological Drought

The results in Section 4 provide a new spatially explicit drought analysis for the past
century. Since the previous meteorological drought analysis by Giambelluca et al. [33],
several studies have documented long-term drying trends for Hawai‘i in both annual
and seasonal rainfall [7,15,56–60]. The years 2010 and 2012 were the driest statewide
since formal record-keeping began in 1920 [34], and as we show here, these years were
part of the worst statewide drought in the last century (Figure 6, Table 1). Based on a
500-year reconstruction of winter rainfall, a drying trend has also been evident over the
past 160 years [57]. Further, a significant upward trend in consecutive dry days has been
occurring since the 1950s, particularly in already-dry leeward areas, and the number of
rainless days per year has been increasing in high elevation areas [61–63]. Our results show
that these trends have been occurring since the 1920s and have persisted through 2019
(Figure 9). Only two previous studies had directly analyzed drought metrics for Hawai‘i.
Koch et al. [64] spatially interpolated rainfall and temperature maps for the period 1920
to 2007, which were then used to develop different drought products, including annual
drought frequency grids for different drought intensity levels (mild, moderate, severe, and
extreme). The range of variability in drought frequency was small within each intensity
class, although results showed a slightly higher frequency of mild and moderate drought
on the leeward sides of most islands. McGree et al. [52] calculated SPI-12 using data from
24 stations in Hawai‘i to examine decadal trends DF, TDD, and TDM for the period
1951–2010. Overall, results showed positive but largely non-significant trends in these
drought metrics on both the leeward and windward sides of the islands, and similar trends
were found across the Pacific Islands region. Our analysis revealed significant increases in
these same metrics calculated from the gridded SPI dataset from 1920 to 2019 at the 95%
level (Figure 9), indicating that over this longer period, droughts have become detectably
more severe and longer lasting.

It has long been recognized that a strong relationship exists between ENSO and wet
season rainfall in Hawai‘i [7–9,65]. Most El Niño events correspond with above-average dry
season rainfall in Hawai‘i (Figure 11), due in part to increased tropical cyclone activity [66],
followed by below-average wet season rainfall, although again, not all droughts have been
associated with an El Niño event [67], and not all El Niño events have led to drought
(Figure 10). Conversely, La Niña events typically lead to below-average dry season rainfall
and above-average wet season rainfall (Figure 11), although a 40-year drying trend in La
Niña wet season rainfall in Hawai‘i is now evident [60], which could help explain the
weaker correlations found between ENSO and wet season SPI (Figure 11). Correlations
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between rainfall and ENSO have historically focused on the winter wet season e.g., [65];
however, as indicated in Figure 11, dry season drought conditions are also strongly related
to ENSO, with SPI-3 having a higher correlation with MEI in the dry season than in the wet
season. Summer rainfall in Hawai‘i has been understudied to date, and additional work is
needed to describe dry season rainfall variability [68]. The effects of El Niño on seasonal
rainfall vary depending on whether the El Niño event is classified as a warm pool Central
Pacific (CP) type or a cold tongue Eastern Pacific (EP) type, with EP events leading to drier
conditions in the wet season, and CP events resulting in near-normal wet season conditions
in Hawai‘i [69,70]. Sequential El Niño and La Niña events also appear to be a dominant
factor for long-duration droughts in Hawai‘i (e.g., a drier wet season from El Niño followed
by a drier dry season with La Niña) [71]. Recent evidence has called into question the
stability of teleconnection patterns in the Pacific [72–76], which has important implications
for predicting drought. How these relationships between ENSO and Hawaiian rainfall
will change with future warming is still unknown. However, some research indicates that
the frequency and intensity of El Niño events will increase significantly [77,78], which
could lead to an increased frequency of extreme drought in Hawai‘i. The unprecedented
2007–2014 drought identified here was not clearly driven by ENSO, however, and this has
led to more questions about the mechanisms that drive multi-year droughts in Hawai‘i. [73].

5.2. Agricultural Drought

Rain-fed fields and pasture lands are the most vulnerable to drought effects in Hawai‘i,
although if a drought persists, irrigated areas also can become vulnerable. State agencies
can implement mandatory water conservation measures at county and local levels to reduce
the amount of water used for irrigation [11,79]. During drought, ranchers lose pasture
and forage resources, which can force them to purchase expensive supplemental feed and,
under more severe conditions, reduce herd size. These responses, along with increased
cattle mortality and reduced calving rates, lead to large revenue losses with consequences
for livelihoods and industry sustainability. For example, the 1980–1981 drought resulted in
$1.4 million in losses for Hawai‘i-based farmers and ranchers [11]. During the 2000–2002
drought, all counties were designated as primary disaster areas by the U.S. Secretary of
Agriculture, which requires at least eight consecutive weeks of the Severe Drought (D2)
level on the USDM (Figure 2); statewide cattle losses alone were estimated at $9 million [11].
Between 2008 and 2016, the state lost approximately $44.5 million in cattle production and
more than 20,000 head of cattle due to drought. Recovery to 2008 levels was estimated
to not occur until 2029 (assuming no additional drought-related disasters), with Hawai‘i
continuing to lose $4–6 million dollars in annual production (M. Thorne, University of
Hawai‘i, written communication, 1 August 2019).

Many U.S. farmers and ranchers are able to capitalize on federal insurance programs
such as the USDA Risk Management Agency (RMA) and disaster relief programs such as the
Farm Service Agency (FSA) Disaster Assistance Program, which includes the Noninsured
Crop Disaster Assistance Program (NAP), the Livestock Forage Disaster Program (LFP),
and the Livestock Indemnity Program (LIP) [80,81]. In the RMA program, drought has been
the number one cause of crop loss for Hawai‘i, resulting in over $9.7 million in payouts
since 1996, with excessive rain as a distant second driver of crop loss ($2.1 million in
payouts; Figure 12a; [80]). The insured crops that have experienced the largest payouts
due to drought in the past 10 years have been macadamia nuts ($8 million) and coffee
($1 million) [80]. Annually, fruits and tree nuts, including macadamias, are valued at over
$140 million, yet macadamia nut yield decreased between 1996 and 2018 [82]. For uninsured
crops, the NAP paid out $23.8 million between 2010 and 2018 (Figure 12b; [81]). Despite the
relatively small annual crop insurance payouts compared to the annual production value of
Hawaiian agricultural commodities, RMA and FSA programs remain important safety nets
for producers and ranchers, especially for small-scale farms that may be more vulnerable to
extreme weather and climate conditions. Hawai‘i’s agricultural production shows a distinct
trend toward concentration on smaller farms [82]. The two livestock disaster programs
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have paid out even more in recent years. Between 2008 and 2018, the LFP paid out over
$50 million to ranchers in the state who suffered grazing losses due to drought, and over
the same period, the LIP paid out almost $800,000 for ranchers who lost livestock, defined
as livestock sold at a lower price or livestock deaths (Figure 12b; [81]). Between 1996 and
2018, these programs have paid out a total of over $84.5 million in drought relief to State of
Hawai‘i producers.
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for the State of Hawai‘i from 2008 to 2018 are shown for three programs: Livestock Forage Disaster
Program (LFP), Livestock Indemnity Program (LIP), and the Noninsured Crop Disaster Assistance
Program (NAP) [81].

5.3. Hydrological Drought

The first indication of hydrological drought is reduced streamflow [22], which de-
creases the water available to support stream and wetland habitats, agricultural irrigation,
cultural practices, watershed processes, and reservoir recharge. Groundwater discharge
and surface water runoff into streams are also reduced during drought [83,84], which can
result in higher concentrations of fecal bacteria in streams immediately following rain
events [85]. Because groundwater systems commonly have substantial storage, they might
not respond immediately to meteorological drought. During extended dry periods, stream-
flow in perennial streams is sustained by groundwater discharge. Thus, meteorological
drought might not immediately affect streamflow in some areas. As hydrological drought
progresses, groundwater recharge and water levels are eventually reduced. For example,
estimates of groundwater recharge across several of the main Hawaiian Islands indicate
that island-wide recharge rates declined by 23% to 38% during five-year historical drought
periods when compared to baseline conditions [86–89]. Groundwater in Hawai‘i is mainly
found as a convex-shaped layer, or basal lens, floating on and displacing denser saltwater,
and at higher elevations in inland dike-impounded systems. Thicker freshwater lenses
such as the Pearl Harbor aquifer on O‘ahu are generally less sensitive to substantive salinity
changes caused by periods of low rainfall compared to thinner lenses. However, higher
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pumping rates due to increased demand will cause the basal water table to decline [90], and
this can lead to saltwater intrusion. Thinner aquifers such as those in coastal areas of the
western part of Maui are more vulnerable to increased salinity during droughts [91]. For
these thin lenses, the transition zone between freshwater and saltwater is closer to the pump
intakes, and thinning of the freshwater lens due to reduced recharge possibly coupled
with increased pumpage during droughts may lead to increased salinity in the pumped
water [33]. Lower groundwater levels exacerbate the potential for saltwater intrusion,
which negatively affects the drinking and agricultural water supply. Over the past century,
stream base flows have declined statewide [92], likely the result of decreased groundwater
recharge, making Hawai‘i’s aquifers more vulnerable to saltwater contamination during
periods of severe drought.

5.4. Ecological Drought

Ecological drought in Hawai‘i commonly drives an increase in wildland fire
occurrence [93–95]. Wildland fires in Hawai‘i are most extensive in dry and mesic non-
native grasslands and shrublands, which cover 24% of the total land area in the state
and account for approximately 80% of annual area burned [96], although, under severe
drought conditions, wildfires have affected native wet forests [97,98]. During drought,
wildfire risk in grasslands increases rapidly, making drought an important contributor to
the invasive grass–wildfire cycle [95,99]. Land use transitions from active agriculture to
fallow areas dominated by non-native fire-prone grasses and shrubs [41] combined with
recurring droughts are expected to increase the risk of future wildfires in Hawai‘i [100].
The relation between wildfire and El Niño occurrence in Hawai‘i is particularly apparent
(Figure 13; [26]). The dry season typically experiences relatively high rainfall before an El
Niño event (Figure 11b), which increases standing stocks of live biomass [100]. As an El
Niño event progresses, drought conditions establish during the wet season (Figure 11a).
This causes widespread senescence and rapid curing of vegetation (e.g., browning and
drying), which drives an increase in wildfire danger. During the 1997–1998 very strong El
Niño event, for example, over 37,000 acres burned across the state, including several large
fires in the usually wet Puna district of eastern Hawai‘i Island [101]. Although more large
fires occur on average during El Niño years, large fires can occur during neutral or La Niña
years (Figure 13). Heavy rainfall in recently burned areas aggravates wildfire effects by
rapidly eroding exposed soils, often delivering large quantities of ash-infused sediment
to streams where it affects stream fauna [95,102]. Because of short ridge-to-reef distances,
much of this sediment ultimately is deposited in nearshore areas [95] where it affects coral
reef communities [103].

Freshwater ecosystems are particularly vulnerable to drought, and stream fauna
are negatively affected by reductions in streamflow through the limited availability of
freshwater habitat, loss of hydrological connectivity, and reduced water quality [104–108].
Reduced surface water and groundwater inputs into nearshore environments may also
have negative effects on organisms in brackish and marine environments [105]; however,
more research is needed to evaluate the effects of reduced groundwater discharge on
nearshore ecosystems, including threatened anchialine ponds [109].

Forest responses to drought have been characterized from remote sensing analyses,
which have shown that dry forest areas in the state “brown down” during droughts [110],
and strong reductions in canopy greenness and volume have been observed on Hawai‘i
Island as a result of long-term precipitation declines [111]. Field-based evidence indicates
that El Niño-induced droughts determine upper elevation forest lines [112,113]. Drier
conditions have been linked to the mortality of the Haleakalā silversword (Argyroxiphium
sandwicense subsp. macrocephalum), an iconic and endangered high-elevation endemic
plant [63,114]. Extreme drought can also cause mortality among some of the dominant na-
tive woody species [115,116], with insect infestations during drought leading to native tree
mortality in dry forest areas [97]. Drought tolerance of native species has been documented,
with some native grass species having greater drought tolerance than invasive species
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(e.g., [117]), and other tolerance variations found across different elevation, moisture, and
light conditions [118–122]. Drought causes invasive ungulates (e.g., feral pigs, goats, deer,
and sheep) to change their foraging patterns in search of food and encroach into residential
and agricultural areas, causing erosion and damage to infrastructure and crops [11,79,97].
The simultaneous threats of drought, wildfire, and browsing pressure from ungulates have
resulted in drastic range reductions for endangered Hawaiian bird species such as the palila
(Loxioides bailleui) [123,124].
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Figure 13. Boxplots of maximum area burned (acres) in Hawai‘i during ENSO phases, 1904–2021.
ENSO phases are separated by intensity levels: VSE = Very Strong El Niño, SE = Strong El Niño,
ME = Moderate El Niño, WE = Weak El Niño, WL = Weak La Niña, ML = Moderate La Niña,
SL = Strong La Niña, and VSL = Very Strong La Niña. Differences between groups were not
statistically significant at the 95% level.

5.5. Socioeconomic Drought

The full extent to which drought affects social and economic systems depends not
only on the physical characteristics of the drought, but also on the characteristics of the
resources and systems exposed to the drought. Water shortages can occur, prompting
state and county agencies to make declarations to implement voluntary or mandatory
water conservation measures. On O‘ahu, both voluntary conservation measures and city
policies such as the low flow toilet ordinance (1993) helped to mitigate drought effects in the
1998–2002 drought [125]. The cost of water transport and any crop or livestock production
losses can result in significant income losses for farmers and ranchers, higher food prices
for consumers, unemployment, decreased land prices, population migration, and mental
and physical stress [11,126]. In some cases, federal insurance programs could mask or
buffer the true financial impacts of crop losses; moreover, increased hedging by farmers on
crop insurance may inadvertently reduce their cash flow and ability to respond to other
disasters [127].

Drought can increase threats to public health and safety from water shortages, wild-
fires, and even mosquito-borne diseases. An estimated 30,000 to 60,000 residents in Hawai‘i
use rainwater catchment systems for drinking water [128] and are the most directly af-
fected by drought and water shortages. Approximately 99% of domestic water used in
Hawai‘i comes from groundwater [129]. Future freshwater stress is expected to be particu-
larly acute for island populations as evaporative demand increases and recharge rates are
reduced [130–132], which, in combination with increased sea levels, will likely enhance
saltwater intrusion into groundwater [5,129]. Wildfires have direct effects on human com-
munities as they can damage infrastructure and other valued resources, and in some cases,
can result in road closures, power outages, and evacuations. Additionally, for public health,
droughts can result in more localized breeding sites for mosquitoes as streams dry and
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leave behind pockets of standing water, contributing to an increased risk of mosquito-borne
diseases such as the 2001–2002 dengue outbreak in Hawai‘i [133]. All of these may have
negative effects on tourism, although the direct and indirect effects of drought on tourism
have not been explicitly studied for Hawai‘i.

Other human dimensions of drought, such as loss of educational opportunities, physi-
cal and mental health problems, interpersonal conflict, and loss of cultural traditions, are
not easy to quantify [134]. Drought directly affects traditional and customary practices
of native Hawaiian communities that rely on freshwater resources. These practices can
include wetland cultivation of taro (Colocasia esculenta), gathering of aquatic and riparian
species, traditional fishpond aquaculture, changes in nearshore fisheries, and changes
in the accessibility of important freshwater heritage sites (springs and seeps) [11,97,135].
The socioeconomic effects of drought in Hawai‘i are understudied to date; more research
would be beneficial to identify the full range of direct and indirect socioeconomic effects of
drought, and how these effects vary across communities.

5.6. Looking Ahead

Novel categories of drought are emerging due to anthropogenic climate change, ex-
panding human water use, and land use change (e.g., “Hotter Drought” [136]; “Flash
Drought” [137]; “Human Induced” or “Human Modified Drought” [138]; and “Transfor-
mational Ecological Drought” [21]). These new forms of drought are increasingly difficult
to anticipate and manage [139]. Whether droughts in Hawai‘i are beginning to show
characteristics reflective of anthropogenic influence is unclear. However, the frequency,
intensity, and duration of droughts were all higher in the second half of the study period
(Figures 6, 7 and 9), with the two longest duration and most severe droughts in Hawai‘i
occurring since 1998. Although the 2007–2014 drought was unprecedented over the past
century (Figures 2 and 6), detecting an anthropogenic signal at small spatial scales such
as that of the Hawaiian Islands is difficult, and at this time, evidence indicates that rain-
fall changes in Hawai‘i are still predominantly driven by large-scale modes of natural
variability [8,73]. Regardless, these multi-year, severe droughts have serious biophysical
and socioeconomic effects on many sectors across the state. Work is ongoing to create
a near-real-time gridded SPI dataset for Hawai‘i using products from the new Hawai‘i
Climate Data Portal to allow for real-time monitoring and analysis [140]. Since 2019,
Hawai‘i has continued to experience severe and extreme drought conditions (see USDM
https://droughtmonitor.unl.edu/ (accessed on 7 August 2022)), highlighting the need for
an SPI dataset that is updated in near-real time.

This study identified long-term trends and synthesized the effects of drought at the
landscape scale, which provides a critical baseline that can be utilized when designing
projects or adaptation strategies. If these regional trends of increasing frequency, intensity,
and duration continue in Pacific Islands (Figure 9; [52,141]), resource managers may wish to
proactively and comprehensively plan and design drought-resilient management systems.
Modeling studies of future conditions have shown that drier future climate conditions [14]
will result in lower groundwater recharge in already water-stressed leeward areas [132],
and appropriate land management strategies can help mitigate the effects [142]. For ex-
ample, ranchers in Hawai‘i and other areas of the tropical Pacific may benefit from early
planning for drought by cultivating hardy, drought-tolerant grass varieties, and manage
groundwater supply for pasture irrigation to ensure continuous forage supply [143]. Un-
derstanding historical patterns, as well as future projections, helps to provide justification
for investing in adaptation strategies that promote resilience to drought. A retrospec-
tive, lessons-learned approach to engaging in drought planning can also lead to powerful
insights about preparing for future droughts [97,144]. Indigenous peoples living in drought-
prone areas have accumulated knowledge over many generations about how to persist and
even thrive during droughts. Where possible, engaging traditional knowledge to inform
actions will represent an important strategy for future drought mitigation and resilience
efforts [145,146]. In addition, natural resource managers have identified several barriers
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Sustainability 2022, 14, 12023 19 of 25

they face when trying to find and incorporate drought data, products, and information in
Hawai‘i. The recently developed Pacific Drought Knowledge Exchange (PDKE) project
seeks to address this need and has demonstrated how a co-production approach and
site-specific climate data (including the gridded SPI dataset [38]) and information can be
utilized to inform planning decisions that address adaptation concerns [147]. Researchers
and resource managers can collaborate closely to coproduce usable and actionable drought
science to better navigate future novel drought conditions [147,148].

Longer-duration and higher-intensity droughts have brought attention to drought in a
way that now points to the importance of higher-level responses that address policy and
large-scale resource management practices. Although residents are aware that Hawai‘i
is home to areas that are among the wettest on Earth, many areas of the State are highly
vulnerable to drought, in particular, the dry, leeward parts of all islands, and the duration
and severity of droughts have increased over the past century. This has critically important
implications for (i) sustaining the agricultural sector, especially rain-fed or surface-water-
reliant farming and ranching; (ii) meeting the hydrological needs of municipalities and
ecosystems that depend critically on groundwater; (iii) reducing the growing health and
human safety effects of wildland fire, which are increasing due to an expanding cover of
non-native fire-prone plants, a warming climate, and a worsening drought regime; and
(iv) designing socio-ecologically based approaches to engage a future world that will be
warmer and, for large areas of Hawai‘i, likely drier. Further drought research would
benefit from including real-time SPI updates, as well as additional research on ecological
and socioeconomic drought effects and the opportunities for policy and management to
mitigate some of these effects. To support resource management under a warmer and
potentially drier future, and to understand how droughts and their impacts may change in
the future as global temperatures continue to rise and the climate system becomes more
variable, understanding drought and protecting water resources are important in Hawai‘i.

6. Conclusions

Drought is a regular and natural component of the climate in Hawai‘i with severe
effects across many sectors statewide. Spatiotemporal analysis of a new gridded drought
index revealed that the two worst droughts for the State of Hawai‘i in the past century were
2007–2014 and 1998–2002, resulting in over $80 million in drought relief in the agriculture
sector. The island-level analysis identified that the 2007–2014 drought was the worst for
Hawai‘i Island, whereas the 1998–2002 drought was more severe for Kaua‘i, O‘ahu, and
Maui Nui. Significant trends were found in decadal drought duration and magnitude,
echoing increasing drought trends across the Pacific Islands. Strong relations exist between
drought, wildfire, and ENSO, with El Niño events typically leading to drier wet season
conditions and greater area burned by wildfires. The assessment of current drought
literature revealed large gaps in socioeconomic and ecological drought effects in Hawai‘i,
and future drought research may prioritize these areas along with real-time SPI updates.
By coupling quantitative SPI analysis with a review of the economic and ecological effects
of drought across different sectors, a more thorough understanding of historical drought
trends can be used to better understand future projections in a given region. Although
drought is experienced differently across landscapes, this combined analysis provides a
framework that enables a holistic yet spatiotemporally relevant view that can contribute to
more effective management.
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University of Hawaii at Mānoa, Honolulu, HI, USA, 2020.
70. Lu, B.-Y.; Chu, P.-S.; Kim, S.-H.; Karamperidou, C. Hawaiian Regional Climate Variability During Two Types of El Niño. J. Clim.

2020, 33, 9929–9943. [CrossRef]
71. Frazier, A.G. The Influence of Large-Scale Modes of Climate Variability on Spatiotemporal Rainfall Patterns and Vegetation

Response in Hawaii. Ph.D. Thesis, University of Hawaii at Mānoa, Manoa, HI, USA, 2016.
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